Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(2): 244-259.e10, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183977

RESUMO

The paradigmatic hematopoietic tree model is increasingly recognized to be limited, as it is based on heterogeneous populations largely defined by non-homeostatic assays testing cell fate potentials. Here, we combine persistent labeling with time-series single-cell RNA sequencing to build a real-time, quantitative model of in vivo tissue dynamics for murine bone marrow hematopoiesis. We couple cascading single-cell expression patterns with dynamic changes in differentiation and growth speeds. The resulting explicit linkage between molecular states and cellular behavior reveals widely varying self-renewal and differentiation properties across distinct lineages. Transplanted stem cells show strong acceleration of differentiation at specific stages of erythroid and neutrophil production, illustrating how the model can quantify the impact of perturbations. Our reconstruction of dynamic behavior from snapshot measurements is akin to how a kinetoscope allows sequential images to merge into a movie. We posit that this approach is generally applicable to understanding tissue-scale dynamics at high resolution.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Diferenciação Celular
2.
Cell Genom ; 3(12): 100426, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116120

RESUMO

Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.

4.
Cell Stem Cell ; 30(2): 207-218.e7, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652946

RESUMO

In response to infections and stress, hematopoiesis rapidly enhances blood and immune cell production. The stage within the hematopoietic hierarchy that accounts for this regeneration is unclear under natural conditions in vivo. We analyzed by differentiation tracing, using inducible Tie2- or Flt3-driven Cre recombinase, the roles of mouse hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). During polymicrobial sepsis, HSCs responded transcriptionally and increased their proliferation and cell death, yet HSC differentiation rates remained at steady-state levels. HSC differentiation was also independent from the ablation of various cellular compartments-bleeding, the antibody-mediated ablation of granulocytes or B lymphocytes, and genetic lymphocyte deficiency. By marked contrast, the fate mapping of MPPs in polymicrobial sepsis identified these cells as a major source for accelerated myeloid cell production. The regulation of blood and immune cell homeostasis by progenitors rather than stem cells may ensure a rapid response while preserving the integrity of the HSC population.


Assuntos
Células-Tronco Hematopoéticas , Sepse , Animais , Camundongos , Diferenciação Celular/genética , Linhagem da Célula , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Integrases/metabolismo , Células-Tronco Multipotentes , Sepse/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Receptor TIE-2/metabolismo
5.
EMBO Rep ; 23(10): e55502, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35971894

RESUMO

Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.


Assuntos
Proteínas Relacionadas à Folistatina , Animais , Células Cultivadas , Receptor de Proteína C Endotelial/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Fatores de Transcrição/metabolismo
6.
Stem Cell Reports ; 16(11): 2784-2797, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34715054

RESUMO

Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic differentiation hierarchy and sustain multilineage hematopoiesis. Here, we show that the transcriptional regulator CITED2 is essential for life-long HSC maintenance. While hematopoietic-specific Cited2 deletion has a minor impact on steady-state hematopoiesis, Cited2-deficient HSCs are severely depleted in young mice and fail to expand upon aging. Moreover, although they home normally to the bone marrow, they fail to reconstitute hematopoiesis upon transplantation. Mechanistically, CITED2 is required for expression of key HSC regulators, including GATA2, MCL-1, and PTEN. Hematopoietic-specific expression of anti-apoptotic MCL-1 partially rescues the Cited2-deficient HSC pool and restores their reconstitution potential. To interrogate the Cited2→Pten pathway in HSCs, we generated Cited2;Pten compound heterozygous mice, which had a decreased number of HSCs that failed to reconstitute the HSC compartment. In addition, CITED2 represses multiple pathways whose elevated activity causes HSC exhaustion. Thus, CITED2 promotes pathways necessary for HSC maintenance and suppresses those detrimental to HSC integrity.


Assuntos
Regulação da Expressão Gênica , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas Repressoras/genética , Transativadores/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Redes Reguladoras de Genes/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq/métodos , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Tempo , Transativadores/metabolismo
7.
Genome Biol ; 22(1): 197, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225769

RESUMO

BACKGROUND: Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. RESULTS: Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. CONCLUSIONS: By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.


Assuntos
Células Eritroides/metabolismo , Eritropoese/genética , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Animais , Diferenciação Celular , Conjuntos de Dados como Assunto , Embrião de Mamíferos , Células Eritroides/citologia , Feto , Fator de Transcrição GATA1/deficiência , Gástrula/crescimento & desenvolvimento , Gástrula/metabolismo , Humanos , Cinética , Fígado/citologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Análise de Célula Única , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional
8.
Stem Cell Reports ; 16(4): 741-753, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33770496

RESUMO

Hematopoiesis serves as a paradigm for how homeostasis is maintained within hierarchically organized cell populations. However, important questions remain as to the contribution of hematopoietic stem cells (HSCs) toward maintaining steady state hematopoiesis. A number of in vivo lineage labeling and propagation studies have given rise to contradictory interpretations, leaving key properties of stem cell function unresolved. Using processed flow cytometry data coupled with a biology-driven modeling approach, we show that in vivo flux experiments that come from different laboratories can all be reconciled into a single unifying model, even though they had previously been interpreted as being contradictory. We infer from comparative analysis that different transgenic models display distinct labeling efficiencies across a heterogeneous HSC pool, which we validate by marker gene expression associated with HSC function. Finally, we show how the unified model of HSC differentiation can be used to simulate clonal expansion in the early stages of leukemogenesis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia/patologia , Modelos Biológicos , Animais , Biomarcadores/metabolismo , Carcinogênese/patologia , Autorrenovação Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrases/metabolismo , Cinética , Camundongos Transgênicos , Receptor TIE-2/metabolismo , Coloração e Rotulagem
9.
Blood Adv ; 5(3): 889-899, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560400

RESUMO

Lifelong multilineage hematopoiesis critically depends on rare hematopoietic stem cells (HSCs) that reside in the hypoxic bone marrow microenvironment. Although the role of the canonical oxygen sensor hypoxia-inducible factor prolyl hydroxylase has been investigated extensively in hematopoiesis, the functional significance of other members of the 2-oxoglutarate (2-OG)-dependent protein hydroxylase family of enzymes remains poorly defined in HSC biology and multilineage hematopoiesis. Here, by using hematopoietic-specific conditional gene deletion, we reveal that the 2-OG-dependent protein hydroxylase JMJD6 is essential for short- and long-term maintenance of the HSC pool and multilineage hematopoiesis. Additionally, upon hematopoietic injury, Jmjd6-deficient HSCs display a striking failure to expand and regenerate the hematopoietic system. Moreover, HSCs lacking Jmjd6 lose multilineage reconstitution potential and self-renewal capacity upon serial transplantation. At the molecular level, we found that JMJD6 functions to repress multiple processes whose downregulation is essential for HSC integrity, including mitochondrial oxidative phosphorylation (OXPHOS), protein synthesis, p53 stabilization, cell cycle checkpoint progression, and mTORC1 signaling. Indeed, Jmjd6-deficient primitive hematopoietic cells display elevated basal and maximal mitochondrial respiration rates and increased reactive oxygen species (ROS), prerequisites for HSC failure. Notably, an antioxidant, N-acetyl-l-cysteine, rescued HSC and lymphoid progenitor cell depletion, indicating a causal impact of OXPHOS-mediated ROS generation upon Jmjd6 deletion. Thus, JMJD6 promotes HSC maintenance and multilineage differentiation potential by suppressing fundamental pathways whose activation is detrimental for HSC function.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Medula Óssea , Transplante de Medula Óssea , Diferenciação Celular
10.
Curr Opin Biotechnol ; 39: 150-156, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27107166

RESUMO

In recent years, sophisticated fate-mapping tools have been developed to study the behavior of stem cells in the intact organism. These experimental approaches are beginning to yield a quantitative picture of how cell numbers are regulated during steady state and in response to challenges. Focusing on hematopoiesis and immune responses, we discuss how novel mathematical approaches driven by these fate-mapping data have provided insights into the dynamics and topology of cellular differentiation pathways in vivo. The combination of experiment and theory has allowed to quantify the degree of self-renewal in stem and progenitor cells, shown how native hematopoiesis differs fundamentally from post-transplantation hematopoiesis, and uncovered that the diversification of T lymphocytes during immune responses resembles tissue renewal driven by stem cells.


Assuntos
Diferenciação Celular , Linhagem da Célula , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Linfócitos T/fisiologia , Animais , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Humanos , Linfócitos T/citologia
11.
Nature ; 518(7540): 542-6, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25686605

RESUMO

Haematopoietic stem cells (HSCs) are widely studied by HSC transplantation into immune- and blood-cell-depleted recipients. Single HSCs can rebuild the system after transplantation. Chromosomal marking, viral integration and barcoding of transplanted HSCs suggest that very low numbers of HSCs perpetuate a continuous stream of differentiating cells. However, the numbers of productive HSCs during normal haematopoiesis, and the flux of differentiating progeny remain unknown. Here we devise a mouse model allowing inducible genetic labelling of the most primitive Tie2(+) HSCs in bone marrow, and quantify label progression along haematopoietic development by limiting dilution analysis and data-driven modelling. During maintenance of the haematopoietic system, at least 30% or ∼5,000 HSCs are productive in the adult mouse after label induction. However, the time to approach equilibrium between labelled HSCs and their progeny is surprisingly long, a time scale that would exceed the mouse's life. Indeed, we find that adult haematopoiesis is largely sustained by previously designated 'short-term' stem cells downstream of HSCs that nearly fully self-renew, and receive rare but polyclonal HSC input. By contrast, in fetal and early postnatal life, HSCs are rapidly used to establish the immune and blood system. In the adult mouse, 5-fluoruracil-induced leukopenia enhances the output of HSCs and of downstream compartments, thus accelerating haematopoietic flux. Label tracing also identifies a strong lineage bias in adult mice, with several-hundred-fold larger myeloid than lymphoid output, which is only marginally accentuated with age. Finally, we show that transplantation imposes severe constraints on HSC engraftment, consistent with the previously observed oligoclonal HSC activity under these conditions. Thus, we uncover fundamental differences between the normal maintenance of the haematopoietic system, its regulation by challenge, and its re-establishment after transplantation. HSC fate mapping and its linked modelling provide a quantitative framework for studying in situ the regulation of haematopoiesis in health and disease.


Assuntos
Linhagem da Célula/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco/citologia , Envelhecimento , Animais , Animais Recém-Nascidos , Transplante de Medula Óssea , Proliferação de Células , Rastreamento de Células , Feminino , Feto/citologia , Feto/embriologia , Fluoruracila , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Receptor TIE-2/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...